# **Introduction To Algebra**

## **Basic Practice**

1. Simplify the following.

(a) 
$$(2w)^2$$

(c) 
$$3q^2 \times 5q$$

(e) 
$$12x^2 \div 4$$

**(g)** 
$$21w^2 \div 7w^2$$

2. Simplify the following.

(a) 
$$2x \times 3y$$

(c) 
$$6x \div 2y \times 3w$$

(e) 
$$p \times 5q - 2 \times 3r$$

**(g)** 
$$(3p)^2 + 5q \times 2r$$

**(b)** 
$$3p \times 4p$$

**(d)** 
$$2r \times (4r)^2$$

**(f)** 
$$24y^3 \div 2y$$

**(h)** 
$$18z^2 \div (3z)^2$$

- **(b)**  $18y \div 3x$
- (d)  $8y \times 3y \div 2x$
- **(f)**  $3x + 8y \div 2z$
- **(h)**  $(5b)^2 3c \times 2d$
- **3.** When x = 3 and y = 5, evaluate the following expressions.

(a) 
$$4x_1 - 5y$$

(c) 
$$3y^2 + (2x)^2$$

(e) 
$$\frac{x}{y}$$

(g) 
$$\frac{x+y}{x-y}$$

**(b)** 
$$8y + 2x$$

**(d)** 
$$2y^3 - (2x)^3$$

**(f)** 
$$\frac{4x}{x^2}$$

**(h)** 
$$\frac{x^2 + y^2}{(x - y)^3}$$

**4.** When x = -2, y = -5, and z = 3, evaluate the following expressions.

(a) 
$$2.5x - 3y + 4z$$

(c) 
$$3xy - yz$$

(e) 
$$x^2 + y^2 + z^2$$

**(g)** 
$$x^3 + y^3 + z^3$$

**(b)** 
$$3x + \frac{2z}{y}$$

(d) 
$$2y \times (z^2 - xy)$$
  
(f)  $\frac{2x^3}{(z+y)^2}$ 

(f) 
$$\frac{2x^3}{(z+y)^2}$$

**(h)** 
$$-3x^3 - y^3 + \frac{1}{9}z^3$$

5. Find the value of

(a) 
$$\sqrt[3]{\frac{2p}{q}}$$
 when  $p = 16$  and  $q = \frac{1}{2}$ ,

**(b)** 
$$p(R^2 - r^2)$$
 when  $p = \frac{22}{7}$ ,  $R = 25$ , and  $r = 24$ ,

(c) 
$$kx^{1}$$
 when  $k = 5$ ,  $x = 7$ , and  $t = 2$ ,

(d) 
$$(kx + 2y)^z$$
 when  $k = 3.5$ ,  $x = 4$ ,  $y = -5$ , and  $z = 3$ ,

(e) 
$$\frac{k}{(\sqrt{x})^3}$$
 when  $k = 3$  and  $x = \frac{1}{4}$ ,

(f) 
$$\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$
 when  $a = \frac{1}{21}$ ,  $b = -\frac{1}{5}$ , and  $c = \frac{1}{9}$ .

## **Further Practice**

#### 11. (a) Find the sum of

(i) 
$$8x + 15y$$
 and  $6x - 10y$ ,

(iii) 
$$2(4p - 5q)$$
 and  $3(-4q + 3p)$ ,

$$(9-5q)$$
 and  $3(-4q+3p)$ ,

(i) 
$$4s + 9t$$
 from  $3s - t$ ,

(iii) 
$$-\frac{2}{3}(3x + 9y)$$
 from  $\frac{1}{2}(8x + 14y)$ .

(c) Subtract 
$$7m - 8n$$
 from the sum of  $7n - 8m$  and  $20m - 9n$ .

### 12. Simplify each of the following.

(a) 
$$(3m-7) + 2(4m-5n) - 3(1-2n)$$

(c) 
$$(4p - 7q - 9) - (p + 5 + 3q)$$

(e) 
$$5(x + 4y - 1) + 4(-4x + 6y - 2)$$

(g) 
$$3\left(\frac{1}{6}a + \frac{1}{4}b - 2\right) + 4\left(\frac{5}{8}a + \frac{9}{16}b - 1\right)$$

(iv) 
$$\frac{1}{4}$$
 of  $(8x - 12y)$  and  $\frac{1}{2}$  of  $(4x - 12y)$ 

(iv) 
$$\frac{1}{4}$$
 of  $(8x - 12y)$  and  $\frac{3}{2}$  of  $(4x + 10y)$ .

(ii) 7a - 3b, -4a + 9b, and -9a - 10b.

(ii) 
$$8r - 5w$$
 from  $7w + 12r$ ,

**(b)** 
$$(3a + 5b - 7) + (4a - 6b + 5)$$

(d) 
$$\left(-\frac{1}{2}x + \frac{2}{3}y - \frac{3}{4}\right) - \left(\frac{3}{2}x - \frac{7}{3}y + \frac{1}{4}\right)$$

(f) 
$$-5(3p-2q-8)-4(-10+3p-q)$$

(h) 
$$\frac{8}{5} \left( \frac{5}{2} s - \frac{3}{4} t - \frac{5}{8} \right) - \frac{2}{3} \left( 12 s + \frac{6}{5} t - 3 \right)$$

#### **13.** Simplify each of the following.

(a) 
$$4[-2a + 4 - 2(a + 3)]$$

(c) 
$$4-7c-2[(c+4)+2(2c-5)]$$

(e) 
$$3[5 - 3w - 5(2w + 1)]$$

(g) 
$$4(3p + 7q) - 5[4p - (q + 4p) + 5q]$$

**(b)** 
$$6w - 5 + 3[(4 - 3w) - 2(w - 8)]$$

(d) 
$$2s + 9 - 3(s - 5) - 2[3(3 - s) + 2(4 - 3s)]$$

(f) 
$$-y + 3x + 2[3x - y + 2(y - 2x)]$$

**(h)** 
$$-21m + 8n - 3[2(m-2n) - 3(3m-2n)]$$

**14.** (a) (i) Simplify the expression 
$$3a + 9 - 5a - 6$$
.

- Hence, find the value of the expression when a = 2.5.
- Simplify the expression 2(4b 7c) 3(2c 3b). (b) (i)
  - (ii) Hence, find the value of the expression when b = -6 and  $c = \frac{1}{2}$ .

(c) (i) Simplify the expression 
$$\frac{x}{3}(6y-9) - \frac{x}{2}(8y-6)$$
.

(ii) Hence, find the value of the expression when x = 5 and y = -3.

(d) (i) Simplify the expression 
$$\frac{3}{5}p - \frac{1}{4}q + \frac{3}{10}(2p - q)$$
.

- (ii) Hence, find the value of the expression when p = 15 and q = -10.
- Simplify the expression 40 z 3[2(4 + 3z) 3(3z 1)].
  - (ii) Hence, find the value of the expression when z = 4.

#### **15.** Express each of the following in its simplest form.

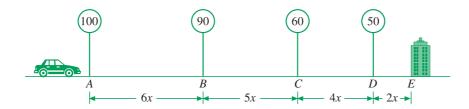
(a) 
$$\frac{2x+1}{3} + \frac{x-3}{4}$$

(c) 
$$\frac{4z+2}{4} + \frac{1-5z}{5}$$

(e) 
$$\frac{3(4p+5)}{5} - \frac{2(3p+1)}{3}$$

(g) 
$$\frac{2(2p-q)}{3} - \frac{3(q+4p)}{2} + \frac{1}{4}$$

**(b)** 
$$\frac{4y-3}{3} - \frac{y-5}{2}$$


(d) 
$$\frac{3(2-3w)}{2} + \frac{6(4w-3)}{5}$$

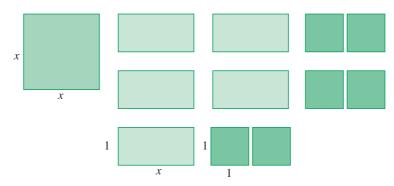
(f) 
$$\frac{q+5}{2} + \frac{2q+7}{5} - 1$$

**(h)** 
$$12\left(\frac{m+2m}{3} - \frac{m-3n}{6} - \frac{m+n}{2}\right)$$

## Enrichment

26.




In the figure, ABCDE is a portion of a road from the exit A of an expressway to a building E. AB = 6x km, BC = 5x km, CD = 4x km, and DE = 2x km. A car drives at the speed limits, i.e., 100 km/hr, 90 km/hr, 60 km/hr, and 50 km/hr in each section from A to E respectively. Let T minutes be the time taken by the car to reach E from A.

- (a) Express T in terms of x.
- **(b)** When x = 0.45, find the value of T.

27. The sides of  $\triangle ABC$  are AB = (3x + 4) cm, BC = (4x - 5) cm, and CA = (x + 13) cm.

- (a) Express the perimeter of  $\triangle ABC$  in terms of x. Give the answer in factored form.
- (b) A square PQRS has the same perimeter as  $\triangle ABC$ . Express the length of PQ in terms of x.
- (c) When x = 7, find
  - (i) the perimeter of  $\triangle ABC$ ,
  - (ii) the area of *PQRS*.

28.



- (a) The figure shows 1 square tile of x by x units, 5 rectangular tiles of x by 1 unit, and 6 square tiles of 1 by 1 unit. Arrange the tiles to form a rectangle and state its dimensions.
- (b) Hence, or otherwise, express  $x^2 + 5x + 6$  in the form (x + a)(x + b), where a and b are integers.
- (c) Express  $x^2 + 8x + 15$  in the form (x + p)(x + q), where p and q are integers.

**29.** The volumes of two glasses of water are (7ax - 3bx + 6ay - 4by) cm<sup>3</sup> and (11bx + 5ax - 6by - 21ay) cm<sup>3</sup> respectively. Let V cm<sup>3</sup> be the total volume of water in the two glasses.

- (a) Express V in terms of a, b, x, and y in factored form.
- **(b)** If both x and y are doubled, determine whether V will be doubled.

## **Challenging Practice**

**24.** The following table shows Kenneth's results in 4 tests.

| Test Number | Score | Maximum Possible Score |
|-------------|-------|------------------------|
| 1           | 6.5   | 10                     |
| 2           | 12    | 20                     |
| 3           | 19    | 25                     |
| 4           | 28    | 40                     |

- (a) In which test was Kenneth's performance the best? Explain your answer.
- **(b)** For each test, grade 'A' is given if the score is more than or equal to 70% of the maximum possible score. Find, as a percentage, the number of times Kenneth was given grade 'A'.
- (c) Suppose that 67.5% of the students in Kenneth's class were given grade 'A' at least once in the 4 tests. Find the number of students who were not given grade 'A' in any of the tests if there are 40 students in the class.
- **25.** (a) A fruit crate contains a mix of 80 apples and oranges. If 21.25% of the fruits are rotten, find the number of rotten fruits.
  - (b) Suppose that 30% of the apples and  $\frac{1}{5}$  of the oranges are rotten. Find the number of
    - (i) rotten apples,
    - (ii) rotten oranges.
  - (c) Hence, express the number of apples as a percentage of
    - (i) the number of fruits,
    - (ii) the number of oranges.
- **26.** Eligible clients of a bank are offered 2 repayment schemes for a one-year loan.

Scheme A: Pay \$50 and 105% of the loan at the end of the one-year period

Scheme B: Pay 103% of the sum of \$200 and the loan at the end of the one-year period

- (a) (i) Which is a better scheme for Mr. Martin to use if he is eligible for the loan and wants to borrow \$10,000?
  - (ii) How much will he save if he selects the better scheme?
- **(b)** Mr. Carter, another eligible client, also borrowed from the bank. Find his loan amount if his payment by either of the schemes is the same.
- 27. (a) If X is 25% less than Y, by how many percent is Y more than X?
  - **(b)** If X is 25% more than Y, by how many percent is Y less than X?
  - (c) If X is decreased by 10% and then increased by 10%, find the percentage change in X.
  - (d) If Y is increased by 10% and then decreased by 10%, find the percentage change in Y.