

Quadratic Factorization and Equations

Basic Practice

- **1.** Factorize each of the following.
 - (a) $w^2 + 9w + 14$
 - **(b)** $x^2 11x + 24$
 - (c) $y^2 + 6y 16$
 - (d) $z^2 3z 10$
 - (e) $a^2 + 40 + 13a$
 - (f) $6b + b^2 27$
- 2. Factorize each of the following.
 - (a) $2p^2 + 11p + 14$
 - **(b)** $5q^2 23q + 12$
 - (c) $4r^2 + 4r 35$
 - (d) $6s^2 7s 5$
 - (e) $3x^2 + 3 10x$
 - (f) $11x + 6x^2 + 4$
- 3. Factorize each of the following.
 - (a) $2y^2 + 12y + 16$
 - **(b)** $4m^2 20m + 24$
 - (c) $5n^2 + 10n 40$
 - (d) $6n^2 26n 20$
 - (e) $28c + 8c^2 60$
 - (f) $-15 39p + 18p^2$
 - (g) $3m^2 12mn + 12n^2$
- 4. (a) Factorize $2x^2 + x 1$. (b) Hence, evaluate $2 \times 99^2 + 99 - 1$.
- 5. The general term of a sequence is $T_n = pn^2 + n 3$, where p is a constant. The 3rd term of the sequence is 18.
 - (a) Find the value of p.
 - (b) Hence, express the general term as a product of two factors in n.
 - (c) Use the answer in (b) to find the 101st term.

- 9. (a) Make y the subject of the formula $z = \frac{x 2y}{3y}$. (b) Hence, find the value of y when x = 22 and $z = -\frac{5}{2}$.
- **10.** (a) Simplify $\frac{1}{x} \frac{1}{y}$. (b) Hence, find the value of $\frac{1}{x} - \frac{1}{y}$ if 6xy = -1 and 6(x - y) = 5.
- 11. (a) Factorize
 - (i) $x^2 + 3x 10$, (ii) $2x^2 - 4x$.
 - **(b)** Simplify $\frac{x^2 + 3x 10}{2x^2 4x}$.
 - (c) (i) Make x the subject of the formula $y = \frac{x^2 + 3x 10}{2x^2 4x}$. (ii) Hence, find the value of x when y = 13.

Further Practice

12. Simplify each of the following algebraic fractions.

(a)
$$\frac{3x-6}{x^2-3x+2}$$

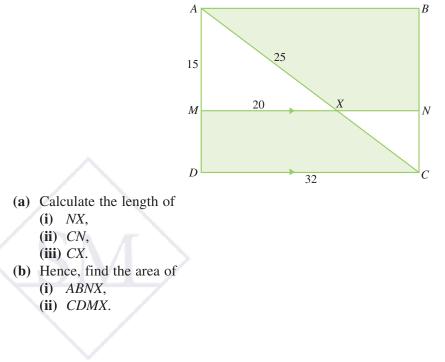
(b) $\frac{-6x+18}{x^2+x-12}$
(c) $\frac{10x-50}{x^2-25}$
(d) $\frac{2x+6}{8x^2-72}$
(e) $\frac{3x^2+7x-6}{3x^2-20x+12}$
(f) $\frac{4x^2-11x-20}{-5x^2+18x+8}$
(g) $\frac{8x^2y-3x^3}{9x^2-64y^2}$
(h) $\frac{5x-6y+30xz-36yz}{2-72z^2}$

(1)
$$\frac{1}{4xy - 14xz - 10wy + 35wz}$$

13. Simplify each of the following.

(a)
$$\frac{2x - 3y}{4ab - 16} \times \frac{ab^2 - 4b}{6xz - 9yz}$$

(b) $\frac{x^3 - 4x}{3x - 6} \times \frac{9x}{x + 2}$
(c) $\frac{25x^2 - y^2}{x^2 - 4xy} \times \frac{3x^3}{15x + 3y}$
(d) $\frac{x^2 + 2x + 1}{x^2 - 3x - 4} \times \frac{x^2 - 16}{2x^2 - 2x - 4}$
(e) $\frac{3xz - zy - 3wx + wy}{9x^2 - 12xy + 4y^2} \times \frac{2y - 3x}{w - z}$
(f) $\frac{6x - 2x^2}{3y + 4} \div \frac{9 - x^2}{4w + 3wy}$
(g) $\frac{x^2 - 5x + 6}{x^2 - 4} \div \frac{x^2 - 6x + 9}{4x - 12}$
(h) $\frac{4x^2 + 4xy + y^2}{9x^2} \div \frac{5y^2 - 20x^2}{3y - 6x}$
(i) $\frac{4x^2z - 16z}{xy^2 + 2y^2} \div \frac{(4z)^2}{(2y)^3}$

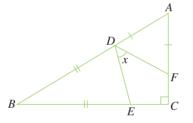

28. Under an enlargement with center of enlargement at (2, 4), $\triangle ABC$ with vertices A(1, 3), B(3, 2), and C(5, 2) is mapped onto $\triangle PQR$.

If *P* is a point in the *y*-axis,

- (a) state the coordinates of P and find the scale factor of the enlargement,
- (b) find the coordinates of Q and R,
- (c) show that the area of $\triangle PQR$ is 4 times the area of $\triangle ABC$.

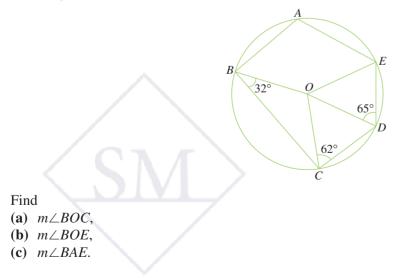
Challenging Practice

- **29.** (a) Using a graph with x ranging from -8 to 6 and y from -10 to 6 and a scale of 1 cm to represent 1 unit on both axes, draw and label $\triangle ABC$ with vertices A(6, -1), B(6, -4), and C(3, -2).
 - (b) (i) Reflect $\triangle ABC$ in the line y = x and label the image as $\triangle A_1B_1C_1$. (ii) Write down the coordinates of A_1, B_1 , and C_1 .
 - (c) (i) Translate $\triangle A_1 B_1 C_1$ by -4 units in the x-direction and -4 units in the y-direction and label the image as $\triangle A_2 B_2 C_2$.
 - (ii) Write down the coordinates of A_2 , B_2 , and C_2 .
 - (d) (i) Rotate $\triangle A_2 B_2 C_2$ through 180° about the fixed point (-3, -4) and label the image as $\triangle A_3 B_3 C_3$. (ii) Write down the coordinates of A_3 , B_3 , and C_3 .
 - (e) (i) Rotate $\triangle A_3 B_3 C_3$ through 90° clockwise about the fixed point (2, -5) and label the image as $\triangle A_4 B_4 C_4$.
 - (ii) Write down the coordinates of A_4 , B_4 , and C_4 .
 - (f) Describe a single the transformation that will map $\triangle A_1 B_1 C_1$ directly $\triangle A_3 B_3 C_3$.
- **30.** A rectangular piece of paper, *ABCD*, is cut into 4 smaller pieces along the lines *AC* and *MN* such that $\triangle AMX$ is similar to $\triangle ADC$. AX = 25 cm, AM = 15 cm, MX = 20 cm, DC = 32 cm, and *MN* is parallel to *DC*.



Enrichment

27.



- (a) In the figure, *AHIB*, *BJC*, *CHD*, and *EIJF* are straight lines. Find $m \angle a + m \angle b + m \angle c + m \angle d + m \angle e + m \angle f + m \angle g$.
- (b) If the sum of the interior angle of a regular polygon is the same as the sum in (a), find the number of sides of the polygon.
- **28.** In the figure, $\triangle ABC$ is a right-angled triangle with $m \angle ACB = 90^\circ$. *D*, *E*, and *F* are points on the sides of $\triangle ABC$ such that AD = AF and BD = BE.

- (a) Find the value of *x*.
- (b) If an exterior angle of a regular polygon is equal to $\angle x$, find the number of sides of the polygon.
- (c) If $m \angle CAB = 64^\circ$, find $m \angle BED$.

29. In the figure, O is the centre of the circle. $m \angle OBC = 32^\circ$, $m \angle OCD = 62^\circ$, and $m \angle DOE = 65^\circ$.

